Development of a sorption-enhanced methanation (SEM) process for the production of synthetic natural gas

Laura Gómez Alonso

lgomez@icb.csic.es

Presented in 2025, Grupo de Investigaciones Medioambientales. Instituto de Carboquímica (ICB-CSIC), Miguel Luesma Castán 4, 50018, Zaragoza, Spain

Supervisors: Dra. I. Martínez (ICB-CSIC) and Dr R. Murillo (ICB-CSIC)

Objectives and novelty

Results

The development of a sustainable energy system based on the efficient use of natural resources and a minimal carbon footprint has gained significant attention in recent years. This approach aims to replace fossil-based technologies with renewable material alternatives. In this context, the production of methane or synthetic natural gas (SNG) from renewable resources offers a viable alternative energy storage while reducing emissions for associated with fossil fuels. This thesis investigates the technological feasibility of a Sorption Enhanced Methanation (SEM) process for the production of high quality SNG. In the SEM process, the water produced as a by-product of the methanation reaction is removed from the reaction medium using porous materials such as zeolites, shifting the reaction equilibrium towards CH_4 production (CO + $3 \cdot H_2$) \leftrightarrow CH₄ + H₂O and/or CO₂ + 4·H₂ \leftrightarrow CH₄ + 2·H₂O). When the adsorbent material becomes saturated and unable to adsorb further water, it is regenerated by variations in pressure and/or temperature for cyclic use. This method enables high CH, purity under milder temperature and pressure conditions and in a smaller number of stages than conventional methanation, simplifying the process and increasing overall efficiency. These features make the SEM process highly effective for SNG production, which could be stored without restriction in the current natural gas transportation network.

The objective of this thesis was to develop, investigate, optimise and scale up the SEM process using commercial catalysts and zeolites for different applications. Due to its versatility, the work explores the SEM process in two scenarios, investigating different feed gas mixtures: (i) H₂/CO/CO₂ mixtures simulating syngas from biomass gasification process, representing a biomass-to-SNG pathway; and (ii) H_2/CO_2 mixtures obtained from renewable H_2 via water electrolysis and CO₂ captured from industrial processes or air, representing an e-SNG production pathway. The SEM process was examined through two distinct technological developments: initial investigations were conducted in a micro fixed-bed reactor at lab scale (2 gr of material) coupled to a mass spectrometer [1], followed by testing in a pressurised TRL-3 fixed-bed reactor (100 gr of material), where the gas was analysed using a micro-chromatograph [2].

Firstly, various catalysts and zeolites, as functional materials, were independently evaluated under relevant conditions for the SEM process to identify those with optimal. Ni, Rh and Ru-based catalysts were evaluated in a fixed bed microreactor at a laboratory scale on methanation activity over a temperature range of 200-300 °C for CO and CO₂ methanation at different gas space velocities. Ni-based catalyst demonstrated the highest activity achieving 80.1% of CO_2 conversion (X_{CO_2}) and 23.3 %vol. CH_4 purity at 250 °C with a gas space velocity of 1 kg_{co2}/kg_{cat}·h. Concerning zeolites, zeolites 3A, 4A, 5A and 13X were texturally and physico-chemically characterised to evaluate their H₂O adsorption performance by thermogravimetric analysis (TGA). All the zeolites showed a higher affinity for H₂O than for CO₂ due to their hydrophilic nature. Zeolite 4A demonstrated the highest H₂O adsorption capacities (0.12 $g_{H_{2O}}/g_{zeolite}$ at 250 °C), which was attributed to its larger specific surface (S_{BET}) and micropore volume (V_{micropore}) [1].

Based on this study, different zeolite/catalyst mixtures were evaluated under SEM conditions in a microfixed bed reactor. The SEM process was initially demonstrated using a commercial Rh-based catalyst combined with zeolite 5A in a 1/5 mass ratio (catalyst/ zeolite). While the Rh catalyst showed good activity under conventional methanation, its performance improved significantly under SEM conditions for H₂/ CO, H_2/CO_2 and $H_2/CO/CO_2$ feed gas mixtures. The best outcomes were obtained for a H₂/CO₂ mixture at 275 °C and 0.58 kg_{co2}/kg_{cat} h. Under these conditions, during the pre-breakthrough period, as the zeolite adsorbed the H₂O produced, complete conversion of H_2 and CO_2 was achieved, producing CH_4 with 100 vol%. purity compared to 22.9 vol%. for conventional methanation. The zeolite adsorbed 0.14 $g_{H_2O}/g_{zeolite}$ during this stage. Once the zeolite was saturated, the gas composition attained in the post-breakthrough period was the same as under pure methanation conditions. In addition, the performance of the SEM was tested using a H₂/CO₂/CO mixture as feed gas, a novel approach in the literature. At 250 °C and 1.1 kg_{cy}/kg_{cat}·h·, the CH₄ content achieved during the pre-breakthrough period was 59.4 vol%, with H₂ being the main product impurity [3].

After demonstrating the potential of the SEM process, the performance of the most extensively studied zeolites in the literature (i.e. 3A, 4A, 5A and 13X) was assessed under SEM conditions using a Rh-based catalyst under CO_2 SEM conditions at 275 °C and 0.58 kg_{CO2}/kg_{eat}·h. The result showed a

significant improvement in CH4 purity from 8.3 vol%. under conventional methanation to around 70 vol%. under SEM conditions, with XCO2 increasing from 38.4 % to 90.2 %. However, the duration of the prebreakthrough period varied significantly between the zeolites: 2.8 min, 17.3 min, 6 min and 16.2 min for the zeolites 3A, 4A, 5A and 13X respectively, with 3A and 5A exhibiting the shortest durations. In order to identify the optimum combination, Rh/4A and Rh/13X were tested at 275 °C and 0.45 kg_{CO2}/kg_{cat}·h. Under these conditions the Rh/4A combination presented higher X_{CO_2} (94.5 %), CH_4 content (85 %) and H_2O uptake capacity (0.142 g_{H20}/g_{zeolite}) than the Rh/13X combination. These differences were attributed due to CO₂ adsorption on the zeolite 13X. Finally, long-term stability tests confirmed consistent Rh/4A performance over multiple SEM/ regeneration cycles, with effective regeneration achieved by heating until 400 °C [1].

In parallel, the reaction mechanisms for three commercial catalysts (Ru, Rh and Ni as active phases) were investigated under conventional methanation and SEM conditions using in-situ Fourier Transform Infrared (FTIR) technique. This analysis confirmed the superior catalytic activity of the Nibased catalyst compared to Rh and Ru catalysts during CO₂ conventional methanation. Based on the detected surface intermediates, a reaction mechanism involving formate and CO as precursors for CH₄ formation was proposed. With Ni identified as the most active catalyst, SEM tests were carried out with Ni/4A and Ni/13X combinations. For Ni/4A, CH₄ and a small proportion of CO₂ were detected in the gas phase at the beginning of the SEM reaction, while H₂O appeared at a later event indicating its initial adsorption on the zeolite. In contrast, for Ni/13X, these phases were indistinguishable due to the chemisorption of CO₂ on zeolite 13X before the reaction started. This CO₂ adsorption on 13X was further confirmed during the regeneration stage by raising the temperature to 400 °C [4].

Based on the results obtained at the laboratory scale, the combination of zeolite 4A and Ni-based catalyst was identified as the most appropriate for evaluating the performance of the SEM process in a lab-scale TRL-3 fixed bed reactor. A comprehensive optimisation of the different process stages was carried out to maximise CH₄ productivity and purity and the H₂O adsorption capacity of the zeolite under moderate pressure and temperature conditions. Operating at 250 °C, 10 bar and 1.4 kg_c/kg_{cat} h with a $H_2/CO/CO_2$ mixture, the process achieved pure CH_4 during 25 min. Different zeolite regeneration methods were evaluated to facilitate cyclic operation, with Pressure Swing Adsorption (PSA) selected as the most suitable and efficient method in terms of energy saving, allowing successive SEM/regeneration cycles to be performed [2]. In addition, a parametric study of the SEM process was carried out using both $H_2/CO/CO_2$ and H_2/CO_2 feed gas mixtures. In both cases, the influence of several process variables was determined, such as the effect of th

H₂/CO/CO₂ and/or H₂/

 CO_2 ratio, pressure, temperature and the addition of light hydrocarbons such as CH_4 and C_2H_4 . Finally, a synthetic syngas was used as a feed gas (including hydrocarbons up to C7). In this scenario, pure CH_4 streams were obtained for 16 minutes at 10 bar, 200°C and a gas space velocity of 1.4 kg_c/kg_{cat} ·h [5].

Finally, a comparative study was carried out to evaluate the performance of the SEM process and the conventional methanation process using $H_2/CO/CO_2$ mixtures as feed gas. Both studies were carried out in the same experimental setup, i.e. a TRL-3 scale fixed bed reactor. The results showed that under SEM conditions it was possible to obtain pure CH₄ operating at moderate pressure and temperature conditions. However, in the case of conventional methanation, the maximum CH₄ purity achieved was 78%vol. (dry basis) using a two cascade reactors scheme. Therefore, this work demonstrates the feasibility and versatility of the SEM process to produce high quality SNG under different feed gas scenarios [6].

Conclusions

This thesis demonstrates the potential of the SEM process for CH₄ production by combining zeolites as adsorbent materials with methanation catalysts to remove the H₂O from the gas phase, thereby achieving high CH₄ purities. The study started with a micro-fixed bed reactor and was scaled up to a TRL-3 fixed bed reactor based on the promising results obtained. Different catalysts (Rh-, Ru- and Ni-based) and zeolites (3A, 4A, 5A and 13X) were evaluated, demonstrating the flexibility of the process under different feed gas scenarios. The research focused mainly on two feed gas compositions: H₂/CO/CO₂ mixtures from sorption enhanced gasification and H_2/CO_2 mixtures where H_2 is produced from water electrolysis and CO₂ is sourced from industrial processes or direct air capture. By operating all stages at a uniform temperature, the SEM process reduces the need for high temperatures to enhance catalytic activity and low temperatures for H₂O condensation, offering significant reductions in both investment and operating costs. In conclusion, this work highlights the versatility and economic advantages of the SEM process for SNG production from diverse feed gas scenarios.

Related Publications

^[1] Gomez L, Martínez I, Navarro MV, Murillo R. Selection and optimisation of a zeolite / catalyst mixture for sorptionenhanced CO_2 methanation (SEM) process. J CO_2 Util 2023;77.

^[2] Gómez L, Martínez I, Grasa G, Murillo R. Experimental demonstration of a sorption-enhanced methanation (SEM) cyclic process on a lab-scale TRL-3 fixed bed reactor. Chem Eng J 2024;491.

^[3] Gómez L, Martínez I, Navarro M V., García T, Murillo R. Sorption-enhanced CO and CO_2 methanation (SEM) for the production of high purity methane. Chem Eng J

^[4] Goméz L, Nguyen-Quang M, Azzolina-Jury F, Martínez I, Murillo R. In-situ FTIR analysis on conventional and sorption-enhanced methanation (SEM) processes over Ni, Rh, and Ru-based catalyst systems. Appl Catal A Gen 2024;678.

^[5] Laura G, Mart I, Grasa G. Different Feed Mixtures for the Sorption-Enhanced Methanation (SEM) Process on a Lab-Scale TRL - 3 Fixed-Bed Reactor. Energy and Fuels 2024.

^[6] Gómez L, Grasa G, Martínez I, Murillo R. Performance study of a methanation process for a syngas obtained from a Sorption Enhanced Gasification process. Chem Eng Sci 2022;267:118291.

Full Thesis can be downloaded from: http://hdl.handle. net/10261/376202